TOC
Java 提供了哪些IO方式?NIO如何实现多路复用?
首先、传统的java.io包,它基于流模型实现,提供了,比如File抽象、输入输出流等。交互方式是同步、阻塞的方式。也就是说,在读取输入流或者写入输出流时,在写、读动作完成之前,线程会一直阻塞在那里,它们之间的调用时可靠的线性顺序。
简单、直观,但是io效率和扩展性存在局限性。
第二、在Java1.4中引入了NIO框架(java.nio),提供了Channel、Selector、Buffer等新的抽象,可以构建多路复用的、同步非阻塞IO程序,同时提供了更接近操作系统底层的高性能数据操作方式。
第三、在Java7中,NIO有了进一步的改进,也就是NIO2,引入了异步非阻塞IO方式,也有很多人叫它AIO(Asynchronous IO)。异步IO操作基于事件和回调机制,可以简单理解为,应用操作直接返回,而不会阻塞在那里,当后台处理完成,操作系统会通知相应线程进行后续工作。
1. 同步与异步
同步和异步关注的是消息通信机制 (synchronous communication/ asynchronous communication)
所谓同步,就是在发出一个*调用*时,在没有得到结果之前,该*调用*就不返回。但是一旦调用返回,就得到返回值了。换句话说,就是由*调用者*主动等待这个*调用*的结果。
而异步则是相反,*调用*在发出之后,这个调用就直接返回了,所以没有返回结果。换句话说,当一个异步过程调用发出后,调用者不会立刻得到结果。而是在*调用*发出后,*被调用者*通过状态、通知来通知调用者,或通过回调函数处理这个调用。
举个通俗的例子:你打电话问书店老板有没有《分布式系统》这本书,如果是同步通信机制,书店老板会说,你稍等,”我查一下”,然后开始查啊查,等查好了(可能是5秒,也可能是一天)告诉你结果(返回结果)。
而异步通信机制,书店老板直接告诉你我查一下啊,查好了打电话给你,然后直接挂电话了(不返回结果)。然后查好了,他会主动打电话给你。在这里老板通过“回电”这种方式来回调。
2. 阻塞与非阻塞
阻塞和非阻塞关注的是程序在等待调用结果(消息,返回值)时的状态.
阻塞调用是指调用结果返回之前,当前线程会被挂起。调用线程只有在得到结果之后才会返回。
非阻塞调用指在不能立刻得到结果之前,该调用不会阻塞当前线程。
还是上面的例子,你打电话问书店老板有没有《分布式系统》这本书,你如果是阻塞式调用,你会一直把自己“挂起”,直到得到这本书有没有的结果,如果是非阻塞式调用,你不管老板有没有告诉你,你自己先一边去玩了, 当然你也要偶尔过几分钟check一下老板有没有返回结果。在这里阻塞与非阻塞与是否同步异步无关。跟老板通过什么方式回答你结果无关。
例子2:
故事:老王烧开水。
出场人物:老张,水壶两把(普通水壶,简称水壶;会响的水壶,简称响水壶)。
老王想了想,有好几种等待方式
1.老王用水壶煮水,并且站在那里,不管水开没开,每隔一定时间看看水开了没。-同步阻塞
老王想了想,这种方法不够聪明。
2.老王还是用水壶煮水,不再傻傻的站在那里看水开,跑去寝室上网,但是还是会每隔一段时间过来看看水开了没有,水没有开就走人。-同步非阻塞
老王想了想,现在的方法聪明了些,但是还是不够好。
3.老王这次使用高大上的响水壶来煮水,站在那里,但是不会再每隔一段时间去看水开,而是等水开了,水壶会自动的通知他。-异步阻塞
老王想了想,不会呀,既然水壶可以通知我,那我为什么还要傻傻的站在那里等呢,嗯,得换个方法。
4.老王还是使用响水壶煮水,跑到客厅上网去,等着响水壶自己把水煮熟了以后通知他。-异步非阻塞
老王豁然,这下感觉轻松了很多。
参考:https://blog.csdn.net/CharJay_Lin/article/details/81259880
IO多路复用的三种机制Select,Poll,Epoll
I/O多路复用(multiplexing)的本质是通过一种机制(系统内核缓冲I/O数据),让单个进程可以监视多个文件描述符,一旦某个描述符就绪(一般是读就绪或写就绪),能够通知程序进行相应的读写操作
select、poll 和 epoll 都是 Linux API 提供的 IO 复用方式。
相信大家都了解了Unix五种IO模型,不了解的可以 => 查看这里
- [1] blocking IO - 阻塞IO
- [2] nonblocking IO - 非阻塞IO
- [3] IO multiplexing - IO多路复用
- [4] signal driven IO - 信号驱动IO
- [5] asynchronous IO - 异步IO
其中前面4种IO都可以归类为synchronous IO - 同步IO,而select、poll、epoll本质上也都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的。
与多进程和多线程技术相比,I/O多路复用技术的最大优势是系统开销小,系统不必创建进程/线程,也不必维护这些进程/线程,从而大大减小了系统的开销。
在介绍select、poll、epoll之前,首先介绍一下Linux操作系统中基础的概念:
用户空间 / 内核空间
现在操作系统都是采用虚拟存储器,那么对32位操作系统而言,它的寻址空间(虚拟存储空间)为4G(2的32次方)。 操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操作系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。
进程切换
为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。因此可以说,任何进程都是在操作系统内核的支持下运行的,是与内核紧密相关的,并且进程切换是非常耗费资源的。 进程阻塞 正在执行的进程,由于期待的某些事件未发生,如请求系统资源失败、等待某种操作的完成、新数据尚未到达或无新工作做等,则由系统自动执行阻塞原语(Block),使自己由运行状态变为阻塞状态。可见,进程的阻塞是进程自身的一种主动行为,也因此只有处于运行态的进程(获得了CPU资源),才可能将其转为阻塞状态。当进程进入阻塞状态,是不占用CPU资源的。
文件描述符
文件描述符(File descriptor)是计算机科学中的一个术语,是一个用于表述指向文件的引用的抽象化概念。 文件描述符在形式上是一个非负整数。实际上,它是一个索引值,指向内核为每一个进程所维护的该进程打开文件的记录表。当程序打开一个现有文件或者创建一个新文件时,内核向进程返回一个文件描述符。在程序设计中,一些涉及底层的程序编写往往会围绕着文件描述符展开。但是文件描述符这一概念往往只适用于UNIX、Linux这样的操作系统。
缓存I/O
缓存I/O又称为标准I/O,大多数文件系统的默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存中,即数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。
Select
我们先分析一下select函数
int select(int maxfdp1,fd_set *readset,fd_set *writeset,fd_set *exceptset,const struct timeval *timeout);
【参数说明】
- int maxfdp1 指定待测试的文件描述字个数,它的值是待测试的最大描述字加1。
- fd_set *readset , fd_set *writeset , fd_set *exceptset
- fd_set可以理解为一个集合,这个集合中存放的是文件描述符(file descriptor),即文件句柄。中间的三个参数指定我们要让内核测试读、写和异常条件的文件描述符集合。如果对某一个的条件不感兴趣,就可以把它设为空指针。
- const struct timeval *timeout timeout告知内核等待所指定文件描述符集合中的任何一个就绪可花多少时间。其timeval结构用于指定这段时间的秒数和微秒数。
【返回值】
int 若有就绪描述符返回其数目,若超时则为0,若出错则为-1
select运行机制
select()的机制中提供一种fd_set的数据结构,实际上是一个long类型的数组,每一个数组元素都能与一打开的文件句柄(不管是Socket句柄,还是其他文件或命名管道或设备句柄)建立联系,建立联系的工作由程序员完成,当调用select()时,由内核根据IO状态修改fd_set的内容,由此来通知执行了select()的进程哪一Socket或文件可读。
从流程上来看,使用select函数进行IO请求和同步阻塞模型没有太大的区别,甚至还多了添加监视socket,以及调用select函数的额外操作,效率更差。但是,使用select以后最大的优势是用户可以在一个线程内同时处理多个socket的IO请求。用户可以注册多个socket,然后不断地调用select读取被激活的socket,即可达到在同一个线程内同时处理多个IO请求的目的。而在同步阻塞模型中,必须通过多线程的方式才能达到这个目的。
select机制的问题
- 每次调用select,都需要把fd_set集合从用户态拷贝到内核态,如果fd_set集合很大时,那这个开销也很大
- 同时每次调用select都需要在内核遍历传递进来的所有fd_set,如果fd_set集合很大时,那这个开销也很大
- 为了减少数据拷贝带来的性能损坏,内核对被监控的fd_set集合大小做了限制,并且这个是通过宏控制的,大小不可改变(限制为1024)
Poll
poll的机制与select类似,与select在本质上没有多大差别,管理多个描述符也是进行轮询,根据描述符的状态进行处理,但是poll没有最大文件描述符数量的限制。也就是说,poll只解决了上面的问题3,并没有解决问题1,2的性能开销问题。
下面是pll的函数原型:
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
typedef struct pollfd {
int fd; // 需要被检测或选择的文件描述符
short events; // 对文件描述符fd上感兴趣的事件
short revents; // 文件描述符fd上当前实际发生的事件
} pollfd_t;
poll改变了文件描述符集合的描述方式,使用了pollfd结构而不是select的fd_set结构,使得poll支持的文件描述符集合限制远大于select的1024
【参数说明】
struct pollfd *fds fds是一个struct pollfd类型的数组,用于存放需要检测其状态的socket描述符,并且调用poll函数之后fds数组不会被清空;一个pollfd结构体表示一个被监视的文件描述符,通过传递fds指示 poll() 监视多个文件描述符。其中,结构体的events域是监视该文件描述符的事件掩码,由用户来设置这个域,结构体的revents域是文件描述符的操作结果事件掩码,内核在调用返回时设置这个域
nfds_t nfds 记录数组fds中描述符的总数量
【返回值】
int 函数返回fds集合中就绪的读、写,或出错的描述符数量,返回0表示超时,返回-1表示出错;
Epoll
epoll在Linux2.6内核正式提出,是基于事件驱动的I/O方式,相对于select来说,epoll没有描述符个数限制,使用一个文件描述符管理多个描述符,将用户关心的文件描述符的事件存放到内核的一个事件表中,这样在用户空间和内核空间的copy只需一次。
Linux中提供的epoll相关函数如下:
int epoll_create(int size);
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
epoll_create 函数创建一个epoll句柄,参数size表明内核要监听的描述符数量。调用成功时返回一个epoll句柄描述符,失败时返回-1。
epoll_ctl 函数注册要监听的事件类型。四个参数解释如下:
- epfd 表示epoll句柄
- op 表示fd操作类型,有如下3种
- EPOLL_CTL_ADD 注册新的fd到epfd中
- EPOLL_CTL_MOD 修改已注册的fd的监听事件
- EPOLL_CTL_DEL 从epfd中删除一个fd
- fd 是要监听的描述符
- event 表示要监听的事件
epoll_event 结构体定义如下:
struct epoll_event { __uint32_t events; /* Epoll events */ epoll_data_t data; /* User data variable */ }; typedef union epoll_data { void *ptr; int fd; __uint32_t u32; __uint64_t u64; } epoll_data_t;
- epoll_wait 函数等待事件的就绪,成功时返回就绪的事件数目,调用失败时返回 -1,等待超时返回 0。
- epfd 是epoll句柄
- events 表示从内核得到的就绪事件集合
- maxevents 告诉内核events的大小
- timeout 表示等待的超时事件
- epoll是Linux内核为处理大批量文件描述符而作了改进的poll,是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率。原因就是获取事件的时候,它无须遍历整个被侦听的描述符集,只要遍历那些被内核IO事件异步唤醒而加入Ready队列的描述符集合就行了。
epoll除了提供select/poll那种IO事件的水平触发(Level Triggered)外,还提供了边缘触发(Edge Triggered),这就使得用户空间程序有可能缓存IO状态,减少epoll_wait/epoll_pwait的调用,提高应用程序效率。
- 水平触发(LT):默认工作模式,即当epoll_wait检测到某描述符事件就绪并通知应用程序时,应用程序可以不立即处理该事件;下次调用epoll_wait时,会再次通知此事件
- 边缘触发(ET): 当epoll_wait检测到某描述符事件就绪并通知应用程序时,应用程序必须立即处理该事件。如果不处理,下次调用epoll_wait时,不会再次通知此事件。(直到你做了某些操作导致该描述符变成未就绪状态了,也就是说边缘触发只在状态由未就绪变为就绪时只通知一次)。
LT和ET原本应该是用于脉冲信号的,可能用它来解释更加形象。Level和Edge指的就是触发点,Level为只要处于水平,那么就一直触发,而Edge则为上升沿和下降沿的时候触发。比如:0->1 就是Edge,1->1 就是Level。
ET模式很大程度上减少了epoll事件的触发次数,因此效率比LT模式下高。
总结 一张图总结一下select,poll,epoll的区别:
select | poll | epoll | |
---|---|---|---|
操作方式 | 遍历 | 遍历 | 回调 |
底层实现 | 数组 | 链表 | 哈希表 |
IO效率 | 每次调用都进行线性遍历,时间复杂度为O(n) | 每次调用都进行线性遍历,时间复杂度为O(n) | 事件通知方式,每当fd就绪,系统注册的回调函数就会被调用,将就绪fd放到readyList里面,时间复杂度O(1) |
最大连接数 | 1024(x86)或2048(x64) | 无上限 | 无上限 |
fd拷贝 | 每次调用select,都需要把fd集合从用户态拷贝到内核态 | 每次调用poll,都需要把fd集合从用户态拷贝到内核态 | 调用epoll_ctl时拷贝进内核并保存,之后每次epoll_wait不拷贝 |
epoll是Linux目前大规模网络并发程序开发的首选模型。在绝大多数情况下性能远超select和poll。目前流行的高性能web服务器Nginx正式依赖于epoll提供的高效网络套接字轮询服务。但是,在并发连接不高的情况下,多线程+阻塞I/O方式可能性能更好。
既然select,poll,epoll都是I/O多路复用的具体的实现,之所以现在同时存在,其实他们也是不同历史时期的产物
- select出现是1984年在BSD里面实现的
- 14年之后也就是1997年才实现了poll,其实拖那么久也不是效率问题, 而是那个时代的硬件实在太弱,一台服务器处理1千多个链接简直就是神一样的存在了,select很长段时间已经满足需求
- 2002, 大神 Davide Libenzi 实现了epoll
epoll(转自知乎)
epoll是Linux目前大规模网络并发程序开发的首选模型。在绝大多数情况下性能远超select和poll。目前流行的高性能web服务器Nginx正式依赖于epoll提供的高效网络套接字轮询服务。但是,在并发连接不高的情况下,多线程+阻塞I/O方式可能性能更好。
首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作的内核对象。
不管是文件,还是套接字,还是管道,我们都可以把他们看作流。
之后我们来讨论I/O的操作,通过read,我们可以从流中读入数据;通过write,我们可以往流写入数据。现在假定一个情形,我们需要从流中读数据,但是流中还没有数据,(典型的例子为,客户端要从socket读如数据,但是服务器还没有把数据传回来),这时候该怎么办?
阻塞:阻塞是个什么概念呢?比如某个时候你在等快递,但是你不知道快递什么时候过来,而且你没有别的事可以干(或者说接下来的事要等快递来了才能做);那么你可以去睡觉了,因为你知道快递把货送来时一定会给你打个电话(假定一定能叫醒你)。
非阻塞忙轮询:接着上面等快递的例子,如果用忙轮询的方法,那么你需要知道快递员的手机号,然后每分钟给他挂个电话:“你到了没?”
很明显一般人不会用第二种做法,不仅显很无脑,浪费话费不说,还占用了快递员大量的时间。 大部分程序也不会用第二种做法,因为第一种方法经济而简单,经济是指消耗很少的CPU时间,如果线程睡眠了,就掉出了系统的调度队列,暂时不会去瓜分CPU宝贵的时间片了。
为了了解阻塞是如何进行的,我们来讨论缓冲区,以及内核缓冲区,最终把I/O事件解释清楚。缓冲区的引入是为了减少频繁I/O操作而引起频繁的系统调用(你知道它很慢的),当你操作一个流时,更多的是以缓冲区为单位进行操作,这是相对于用户空间而言。对于内核来说,也需要缓冲区。
假设有一个管道,进程A为管道的写入方,B为管道的读出方。
假设一开始内核缓冲区是空的,B作为读出方,被阻塞着。然后首先A往管道写入,这时候内核缓冲区由空的状态变到非空状态,内核就会产生一个事件告诉B该醒来了,这个事件姑且称之为“缓冲区非空”。 但是“缓冲区非空”事件通知B后,B却还没有读出数据;且内核许诺了不能把写入管道中的数据丢掉这个时候,A写入的数据会滞留在内核缓冲区中,如果内核也缓冲区满了,B仍未开始读数据,最终内核缓冲区会被填满,这个时候会产生一个I/O事件,告诉进程A,你该等等(阻塞)了,我们把这个事件定义为“缓冲区满”。
假设后来B终于开始读数据了,于是内核的缓冲区空了出来,这时候内核会告诉A,内核缓冲区有空位了,你可以从长眠中醒来了,继续写数据了,我们把这个事件叫做“缓冲区非满” 也许事件Y1已经通知了A,但是A也没有数据写入了,而B继续读出数据,知道内核缓冲区空了。这个时候内核就告诉B,你需要阻塞了!,我们把这个时间定为“缓冲区空”。
这四个情形涵盖了四个I/O事件,缓冲区满,缓冲区空,缓冲区非空,缓冲区非满(注都是说的内核缓冲区,且这四个术语都是我生造的,仅为解释其原理而造)。这四个I/O事件是进行阻塞同步的根本。(如果不能理解“同步”是什么概念,请学习操作系统的锁,信号量,条件变量等任务同步方面的相关知识)。
然后我们来说说阻塞I/O的缺点。但是阻塞I/O模式下,一个线程只能处理一个流的I/O事件。如果想要同时处理多个流,要么多进程(fork),要么多线程(pthread_create),很不幸这两种方法效率都不高。 于是再来考虑非阻塞忙轮询的I/O方式,我们发现我们可以同时处理多个流了(把一个流从阻塞模式切换到非阻塞模式再此不予讨论):
while true {
for i in stream[]; {
if i has data
read until unavailable
}
}
我们只要不停的把所有流从头到尾问一遍,又从头开始。这样就可以处理多个流了,但这样的做法显然不好,因为如果所有的流都没有数据,那么只会白白浪费CPU。这里要补充一点,阻塞模式下,内核对于I/O事件的处理是阻塞或者唤醒,而非阻塞模式下则把I/O事件交给其他对象(后文介绍的select以及epoll)处理甚至直接忽略。
为了避免CPU空转,可以引进了一个代理(一开始有一位叫做select的代理,后来又有一位叫做poll的代理,不过两者的本质是一样的)。这个代理比较厉害,可以同时观察许多流的I/O事件,在空闲的时候,会把当前线程阻塞掉,当有一个或多个流有I/O事件时,就从阻塞态中醒来,于是我们的程序就会轮询一遍所有的流(于是我们可以把“忙”字去掉了)。代码长这样:
while true {
select(streams[])
for i in streams[] {
if i has data
read until unavailable
}
}
于是,如果没有I/O事件产生,我们的程序就会阻塞在select处。但是依然有个问题,我们从select那里仅仅知道了,有I/O事件发生了,但却并不知道是那几个流(可能有一个,多个,甚至全部),我们只能无差别轮询所有流,找出能读出数据,或者写入数据的流,对他们进行操作。
但是使用select,我们有O(n)的无差别轮询复杂度,同时处理的流越多,没一次无差别轮询时间就越长。再次说了这么多,终于能好好解释epoll了
epoll可以理解为event poll,不同于忙轮询和无差别轮询,epoll之会把哪个流发生了怎样的I/O事件通知我们。此时我们对这些流的操作都是有意义的。(复杂度降低到了O(1))
在讨论epoll的实现细节之前,先把epoll的相关操作列出:
epoll_create 创建一个epoll对象,一般epollfd = epoll_create()
epoll_ctl (epoll_add/epoll_del的合体),往epoll对象中增加/删除某一个流的某一个事件
比如
epoll_ctl(epollfd, EPOLL_CTL_ADD, socket, EPOLLIN);//注册缓冲区非空事件,即有数据流入
epoll_ctl(epollfd, EPOLL_CTL_DEL, socket, EPOLLOUT);//注册缓冲区非满事件,即流可以被写入
epoll_wait(epollfd,...)等待直到注册的事件发生
(注:当对一个非阻塞流的读写发生缓冲区满或缓冲区空,write/read会返回-1,并设置errno=EAGAIN。而epoll只关心缓冲区非满和缓冲区非空事件)。
一个epoll模式的代码大概的样子是:
while true {
active_stream[] = epoll_wait(epollfd)
for i in active_stream[] {
read or write till
}
}
限于篇幅,我只说这么多,以揭示原理性的东西,至于epoll的使用细节,请参考man和google,实现细节,请参阅linux kernel source。